Complex Geometry Exercises

Week 4

Exercise 1. Prove that, up to isomorphism, we have the following correspondences:

- real vector bundles of rank $r \leftarrow \stackrel{1:1}{\longrightarrow} \check{H}^1(X, \mathrm{GL}(r, \mathcal{C}^{\infty}(X, \mathbb{R})),$
- complex vector bundles of rank $r \leftarrow \xrightarrow{1:1} \check{H}^1(X, \mathrm{GL}(r, \mathcal{C}^{\infty}(X, \mathbb{C})))$
- holomorphic vector bundles of rank $r \leftarrow \overset{1:1}{\longrightarrow} \check{H}^1(X, \mathrm{GL}(r, \mathcal{O}_X))$,

where $GL(r, \mathcal{F})$ is the sheaf of invertible rank k matrices with coefficients in the sheaf \mathcal{F} .

Exercise 2. Show that any short exact sequence of holomorphic vector bundles

$$0 \longrightarrow L \longrightarrow E \longrightarrow F \longrightarrow 0$$
.

where L is a line bundle, induces the short exact sequence

$$0 \longrightarrow L \otimes \Lambda^{k-1}E \longrightarrow \Lambda^kE \longrightarrow \Lambda^kF \longrightarrow 0.$$

Exercise 3. Let L_1 and L_2 be holomorphic line bundles such that $L_1|_{X\setminus Y} = L_2|_{X\setminus Y}$ for $Y \subset X$ a complex submanifold of codimension ≥ 2 . Show that $L_1 \cong L_2$.

Exercise 4. Prove that for a 1-dimensional connected complex manifold X,

$$K(X)\cong \left\{f:X\to \mathbb{P}^1 \middle|\ f\ is\ holomorphic,\ f\not\equiv \infty\right\}.$$

Exercise 5. Let $X = \mathbb{C}^n/\Lambda$ be a complex torus. Show that:

- (a) $\tau_X = \mathcal{O}_X^n$, $K_X = \mathcal{O}_X$
- (b) kod(X) = 0 and $kod(Y) \ge 0$ for every (positive-dimensional) submanifold $Y \subset X$ (continues on the back)

Exercise 6 (Veronese embedding). Show that the map defined by global sections $H^0(\mathbb{P}^1, \mathcal{O}(2))$ is an embedding

$$\phi: \mathbb{P}^1 \hookrightarrow \mathbb{P}^2$$

realising \mathbb{P}^1 as the zero set of a homogeneous polynomial of degree 2.

Exercise 7. Assume X is a connected complex manifold.

- (i) Show that a holomorphic line bundle L over X is isomorphic to the trivial bundle if and only if both L and L^* admit a non-trivial global section.
- (ii) Deduce $H^0(\mathbb{P}^n, \mathcal{O}(k)) = 0$ for k < 0.
- (iii) Prove (or convince yourself) that there exist line bundles such that

$$H^0(X,L) = 0 = H^0(X,L^*)$$
.